3x^2-4x=2(x+1)

Simple and best practice solution for 3x^2-4x=2(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2-4x=2(x+1) equation:



3x^2-4x=2(x+1)
We move all terms to the left:
3x^2-4x-(2(x+1))=0
We calculate terms in parentheses: -(2(x+1)), so:
2(x+1)
We multiply parentheses
2x+2
Back to the equation:
-(2x+2)
We get rid of parentheses
3x^2-4x-2x-2=0
We add all the numbers together, and all the variables
3x^2-6x-2=0
a = 3; b = -6; c = -2;
Δ = b2-4ac
Δ = -62-4·3·(-2)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{15}}{2*3}=\frac{6-2\sqrt{15}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{15}}{2*3}=\frac{6+2\sqrt{15}}{6} $

See similar equations:

| X^3+3x^2+12x+4=0 | | 4t+8=3t+14 | | 6^2-x-15=0 | | 4(x+26)=46 | | 11+8(x-2)=4(3-x) | | 21+.08x=0.12x | | D=37+7t-4.9t^2 | | 3a-4a=3 | | −5x+3=−8x−9 | | -98=-6k-2 | | 7x+10+4x+10+3x+12=90 | | 24x-9-15x+2=23x-8-14x+17 | | 4y-9+y+27=7y+20-4y | | 40x-40=360 | | 312.60/6=x/4 | | 20x-20=360 | | 4x^2-25+25=0 | | 34x+190=360 | | 12x-10-16x=3(4x-4)+2 | | 6-4(a+3)=2(a-1 | | p/6=p+7/8 | | 28x-10-10-16x=3(4x-4)+2 | | −8=−3x+34 | | 5d=23 | | -9(v+4)+3v+7=5v+6 | | 5(u-5)=3u-21 | | -8=3(y-8)-7y | | 4.67=9.8m-200.7/45+m | | 8f+19=3 | | 20+2w=-6 | | 4.67m=9.8m-200.7/45 | | 5(x+5)=9x+29 |

Equations solver categories